Goals

I have always wondered why setting goals is advantageous. Instead of saying “I want to lose 10 pounds this month” why not just attempt to lose as much weight as possible? An empty argument about this is that “but then if I did lose more than 10 pounds I wouldn’t feel satisfied since I didn’t break a goal I set myself”. This is quite bizarre thinking. Goals make you happy because of the effect they have on the universe. You’re happy because you lost weight not because you achieved a goal. But there is a small amount of truth to this. I found finally understood the nature of goals.

Goals are self fulfilling prophecies. As you achieve more goals the power of goals as self fulfilling prophecies increases. This is because your confidence in them increases and in the realm of mind, your expectation of achieving a goal increases the probability that you will succeed in that goal. That’s the nature of it.

So therefore it would be a bad idea to often set yourself goals that you can never achieve, such as losing 100 pounds in a month. Because this means that the moment you set the goal you have a strong belief that you won’t complete this goal because you’ve never completed any of your previous goals.

This is why setting realistic goals is beneficial to you. Setting goals which are too easy is a waste of time. You want to be at the point where setting the goal makes the difference between achieving it or not. You would’ve lost 1 pound in a month without setting yourself that goal, making the process of setting such a goal wasteful. You need to be setting goals that you wouldn’t have achieved without setting that goal.

With this new understanding of goals it surprisingly does make sense to be happy that you completed a goal because it gives you more power over your decisions. Your belief in goals increases as a result of finishing a goal therefore goals you set in the future will have a greater probability of success.

Optimizing the goals you set for yourself is key. I recommend setting goals which you think have a 50% chance of success to maximize your growth. The further you stray from 50% the less influence you have over whether it is completed or not. If you think your chance of success is 99% then it doesn’t really matter what you do, you’re going to succeed anyway. If your chance of success is 1% then it doesn’t really matter what you do, you’re going to fail anyway.

With this new understanding of goals, I began to value them a lot more. I started to build a program to visualize goals. The basic idea is for it to visualize the probability that you succeed for a range of goals by analyzing goals you input in the past along with the record of if that goal was completed. It uses the information in a very strict way. It can only work with goals that are time based such as “jog for 30 hours in the next 2 weeks” or “spend 40 hours per week learning to program”.

Here is an image of the program.

Image

This graph visualizes 2 goals, one was successful and the other was not. The goals shown were the following:

8 hours work in 24 hours: Success

12 hours in 24 hours: Failure

Before I go further explaining what is shown, I need to explain the logical deductions about the ability of this person to work using the information from a single goal. Here are the simple deductions:

If a person does x hours of work in y hours he must therefore be able to do x hours of work in z hours where z >= y. This is fairly intuitive – it wouldn’t make any sense for a person to not be able to do the same amount of work given more time.

If a person does x hours of work in y hours, he must therefore be able to do Minimum(0, x-z) hours work in y-z hours where z <= y. This one’s slightly harder to grasp. The basic idea is to think about the worst case scenario of how a worker might complete his work and then work for that. Perhaps there is a worker who always waits 16 hours before starting his goal. If he set a goal to do 8 hours work in 24 hours, he would succeed. But this deduction also means he can do 7 hours work in 23 hours, 6 hours work in 22 hours and so on.

These logical deductions can basically never be wrong without weird assumptions (such as a person being able to do more work with a smaller time limit). It could be true that a person is motivated more when there’s less time left but if you’re given more time then you’re inevitably going to end up with a small amount of time left at some point.

Back to the graph. Here it is again with the goals annotated.

Image

It could be that a work does do more work given less time, but that isn’t calculated by the algorithm. It just assigns it an unknown value for that amount of time.

If the areas overlap, they mix colors. If green overlaps red it becomes yellow.

Image

 

This is how the graph looks once I’ve added the goal 14 hours work in 20 hours, success. The old success goal has been totally eclipsed (because the new goal does more work in less time) and there has been some overlap creating a yellow area to represent a 50% chance of success. In reality the edge would never go straight from 50% to 100% it would be a gradient but this will be shown wen the user has completed many goals so it becomes a gradient. Trying to do it using an algorithm would result in incorrect values – it’s impossible to know just how the transition from 0% success to 100% success will be. There’s not enough data to do this (and there never will be) without potentially creating bias. By bias I mean some users could look better than other users even though they’re just as capable overall as a result of how the algorithm might change their results.

I’m still working on this, it’s a growing project. The hardest part is trying to get goals to work together. Setting goals of different types is quite tricky since one goal may be more important than another. The basic problem is that if you set two different goal types in the same period, it makes it look worse than if you just did one of those goals alone since you’d have more time to do it (since you wouldn’t spend any time on a goal you didn’t set) but it would show up on the graph the same. This is why I haven’t yet fully figured out how to use multiple goals together.

I suspect the solution is for the user to input their idea ratio of goals in. For every 2 hours of programming, do 1 hour of jogging and such. And I suspect the ideal ratio of people will change according to how much time they have. If its only 20 hour in the next week all of that should be sleep (sleeping is a goal – you aim to sleep when you go to bed) – it would be crazy to try to have less sleep than this.